Linear-to-rotary motion converter using asymmetric compliant mechanics and single-crystal PMN-PT stack actuator

Author:

Na Tae-Won1,Kang Dae-Hyun1,Jung Jin-Young1,Han Jae-Hung2,Oh Il-Kwon1

Affiliation:

1. School of Mechanical, Aerospace and Systems Engineering, Division of Ocean System Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

2. School of Mechanical, Aerospace and Systems Engineering, Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Abstract

In this article, we report a novel linear-to-rotary motion converter that employs a single-crystal 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-29PT) (PMN-29PT ) stack actuator and asymmetric compliant mechanics for flexural hinges. This unique motion converter is compact, economical to fabricate and has the capacity to be utilized in small-scale applications. The linear-to-rotary motion converter prototype was designed and fabricated using a seven-bar linkage kinematic model. Additionally, compliant mechanics at flexural hinges were used in place of conventional revolute joints. The converter consists of a stack actuator and a structural mechanism, including flexural hinges and a pivot hinge to convert linear motion to rotary motion. To determine the feasibility of the mechanism design and to estimate the accurate rotational motion of the designed converter, numerical simulations utilizing COMSOL Multiphysics 4.3 and experimental validation were performed by evaluating the displacement of the stack actuator and the rotational angle of the linear-to-rotary motion converter according to the changes of driving voltages. The experimental results show that the linear-to-rotary motion converter can produce a rotation angle of 1.52° at an input voltage of 900 V. The unique linear-to-rotary motion converter design proposed here can be applied to various engineering fields, instead of existing mechanical linear-to-rotary mechanisms, due to the advantages in compact size and precise control.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3