Experimental and numerical investigation of the bonding conditions of piezoelectric sensors under high compressive strains on structures

Author:

Negi Prateek1,Kaur Naveet2ORCID,Kumar Pardeep2

Affiliation:

1. The Department of Civil Engineering, National Institute of Technology (NIT) Calicut, Kerala, India

2. Bridge Engineering and Structures Division (BES) Division, CSIR-Central Road Research Institute (CRRI), New Delhi, India

Abstract

In the past two decades, thin lead zirconate titanate (PZT) sensors have been widely used in the electro-mechanical impedance (EMI) technique for sensing applications, particularly for monitoring civil structures. They are typically surface bonded using an industrial adhesive to the monitored structure. The bond between a PZT sensor and structure must be sufficiently strong to transmit the response of the structure to the sensor. In this study, acrylic cubes bonded with PZT patches are subjected to high compressive strains above 2000 με to develop a better understanding of bonding conditions when structures undergo such high strains. Acrylic can undergo such high strains without developing fissures or cracks. Thus, the recorded EMI response only reflects changes in the bonding condition due to the development of strains. The experiments are also numerically supplemented by simulating various debonding conditions. At higher strains, it was observed that the admittance signatures tend to behave similarly to a freely vibrating PZT patch, indicating debonding around the periphery. Even after the complete unloading of the structure, the signatures did not return to their initial state, indicating a permanent partial debonding. The strains developed on a loaded structure are not uniform and can be localized due to structural imperfections, resulting in higher strains in the region where a sensor is bonded. The insights from this study will aid in expanding the scope of the application of PZT sensors for monitoring civil structures through better comprehension of the PZT-structure bond under high compressive strains.

Funder

Department of Science and Technology, India

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3