Enhancing output power of rotational electret energy harvester by synchronized switch harvesting on inductor

Author:

Liu Yiran1ORCID,Badel Adrien2,Suzuki Yuji1

Affiliation:

1. Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan

2. SYMME Laboratory, Université Savoie Mont Blanc, Annecy le Vieux, France

Abstract

A nonlinear interface circuit, known as synchronized switch harvesting on inductor (SSHI), for in-plane rotational electret kinetic energy harvesters (EHs) was developed. An explicit generator model is derived to verify the applicability of SSHI, which was originally proposed for the piezoelectric EH, on an in-plane electret EH. Experimentally, 505 μW was harvested with SSHI at a rectified voltage of 142 V for an in-plane rotational electret EH rotating at 1 rps, which is 2.47 times of that with a full-bridge rectifier, and which is in good agreement with the simulation result. The circuit efficiency and criteria for the inductor selection were clarified through circuit analysis based on spice simulation. It is found that the power dissipation of voltage-divider and rectification diodes becomes pronounced as the load voltage increases, constraining the efficiency. The inductor, which usually dominates the circuit volume, can be miniaturized for electret EHs, because the voltage inversion ratio, a benchmark of the SSHI performance, turns out to be insensitive to the series resistance of the inductor. The self-powering ability of the proposed circuit is also presented.

Funder

Core Research for Evolutional Science and Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3