A robust optimum controller for suppressing radiated sound from an intelligent cylinder based on sliding mode method considering piezoelectric uncertainties

Author:

Talebitooti Roohollah1ORCID,Darvish Gohari Hamed1,Zarastvand Mohamadreza1,Loghmani Ali2

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2. School of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

In this study, a robust controller against the uncertainties in piezoelectric patches including sensor and actuator is designed based on sliding mode method to control the radiated sound from cylindrical shells. Accordingly, in order to extract and discretize the dynamic equations of a smart cylinder equipped with piezoelectric patches, the Hamilton’s principle and the Rayleigh-Ritz method are, respectively, used . The radiated sound is estimated by the Kirchhoff-Helmholtz integral and the acoustic structural sensing method. Furthermore, an innovative approach is proposed on sliding mode control to model system uncertainties and design robust control signals against these disturbances. Using effective control signals for each mode is the applied methodology for establishing independent sliding surfaces. In fact, it is attempted to relate between actuator matrix determinant and system control ability in generating the efficient control signals and error reduction due to actuators uncertainties. By the aid of this relation, optimization of the actuators position according to the genetic algorithm is implemented. The obtained results show that by optimizing the actuators position not only the appropriate performance of the system in controlling the radiated sound from the structure is enhanced but also the essential control voltage for each actuator is significantly decreased.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3