Manufacturing and Testing of Active Composite Panels with Embedded Piezoelectric Sensors and Actuators

Author:

Ghasemi-Nejhad Mehrdad N.1,Russ Richard2,Pourjalali Saeid2

Affiliation:

1. Department of Mechanical Engineering, Intelligent and Composite Materials Laboratory & Advanced Materials, Manufacturing Laboratory, University of Hawaii at Manoa, Honolulu, HI 96822, USA,

2. Department of Mechanical Engineering, Intelligent and Composite Materials Laboratory & Advanced Materials, Manufacturing Laboratory, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Abstract

This work presents the manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon/epoxy prepreg fabric with 0.30 mm ply thickness. A cross-ply type stacking sequence is employed for the ACPs. The piezoelectric flexible patches employed here are Active Fiber Composite (AFC) piezoceramics with 0.33 mm thickness. Composite layers with openings are used to fill the space around the embedded piezo patches to minimize the problems associated with ply drops in composites. The AFC piezoceramic patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezo leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing cutout hole, molded-in hole, and embedding techniques. The laminated ACPs with their embedded piezoelectric sensors and actuators were vacuum bagged and co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The Curie temperature of the embedded piezo patches should be well above the curing temperature of the composite materials as was the case here. The capacitance of the piezoelectric patches was measured before and after cure for quality control. The manufactured ACPs were trimmed and then tested for their functionality. A finite element analysis (FEA) model was developed to verify the free expansion of the AFC FEA. Next, the FEA model of the manufactured ACP was developed based on the AFC FEA free expansion model and was employed to test the functionality of the AFCs embedded within the ACPs. Both static and dynamic FEA results of the modeled ACPs showed very good agreements with their corresponding experimental results. Finally, vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using Hybrid Adaptive Control (HAC), were successfully conducted on the manufactured ACP beams and their functionality was further demonstrated. The advantages and disadvantages of ACPs with embedded piezoelectric sensor and actuator patches manufactured employing the abovementioned three wires out techniques are also presented in terms of manufacturing and performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference52 articles.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3