Autonomous camber morphing of a helicopter rotor blade with temperature change using integrated shape memory alloys

Author:

DiPalma Matthew1ORCID,Gandhi Farhan1ORCID

Affiliation:

1. Center for Mobility with Vertical Lift (MOVE), Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract

The present study proposes and explores a new autonomous morphing concept, where a 12–13° increase in camber is realized over a spanwise section of a helicopter rotor blade with increase in ambient temperature. The camber change is achieved through integration of Shape Memory Alloys (SMAs) on the lower surface of the blade, aft of the leading-edge spar. For a reference rotor of a utility-class helicopter generating 21,000 lbs thrust, a loss in lift of 2590 lb was observed due to operation in hot conditions. With the SMA camber morphing section extending from the blade root to 25%, 50%, and 75% span, the rotor recovered up to 11%, 43%, and 82% of the lift loss at high temperature (compared to a no-SMA blade). If the morphing section instead spans the outboard 25% of the blade (from 75% span to the blade tip), up to a 66% lift recovery is achieved due to the higher dynamic pressures over this region. While these results are achieved with existing SMA properties, idealized target values are also presented. For the SMA considered in the study, while a 40–115°F temperature change was required to achieve the full 12–13° design camber change, partial camber is achieved over a smaller temperature range. The paper identifies desired SMA properties that would produce a 12–13° camber change over an 80–100°F temperature change.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3