Deep reinforcement learning for tuning active vibration control on a smart piezoelectric beam

Author:

Febvre Maryne12ORCID,Rodriguez Jonathan1,Chesne Simon1,Collet Manuel2

Affiliation:

1. INSA Lyon, CNRS, LaMCoS, UMR5259, Villeurbanne, France

2. CNRS, Ecole Centrale de Lyon, ENTPE, LTDS, UMR5513, Ecully, France

Abstract

Piezoelectric transducers are used within smart structures to create functions such as energy harvesting, wave propagation or vibration control to prevent human discomfort, material fatigue, and instability. The design of the structure becomes more complex with shape optimization and the integration of multiple transducers. Most active vibration control strategies require the tuning of multiple parameters. In addition, the optimization of control methods has to consider experimental uncertainties and the global effect of local actuation. This paper presents the use of a Deep Reinforcement Learning (DRL) algorithm to tune a pseudo lead-lag controller on an experimental smart cantilever beam. The algorithm is trained to maximize a reward function that represents the objective of vibration mitigation. An experimental model is estimated from measurements to accelerate the DRL’s interaction with the environment. The paper compares DRL tuning strategies with [Formula: see text] and [Formula: see text] norm minimization approaches. It demonstrates the efficiency of DRL tuning by comparing the control performance of the different tuning methods on the model and experimental setup.

Funder

Centre Lyonnais d’Acoustique, Université de Lyon

Publisher

SAGE Publications

Reference40 articles.

1. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

2. Curie P (1984) Oeuvres de Pierre Curie / publ. par les soins de la sociètè française de physique. Bibliothèque nationale de France. Available at: https://gallica.bnf.fr/ark:/12148/bpt6k2282p/f9.item.zoom

3. State-space solutions to standard H/sub 2/ and H/sub infinity / control problems

4. Artificial Intelligence for Active Vibration Control Optimization on Smart Structures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3