A novel unmanned aircraft with solid-state control surfaces: Analysis and flight demonstration

Author:

Bilgen Onur1,Butt Lauren M1,Day Steven R1,Sossi Craig A1,Weaver Joseph P1,Wolek Artur1,Mason William H1,Inman Daniel J1

Affiliation:

1. Departments of Mechanical Engineering and Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract

This article presents a completely servo-less, piezoelectric controlled, wind tunnel and flight tested, remotely piloted aircraft that has been developed by the 2010 Virginia Tech Wing Morphing Design Team (a senior design project between the Departments of Mechanical Engineering and Aerospace and Ocean Engineering). A type of piezocomposite actuator, the Macro-Fiber Composite, is used for changing the camber of all control surfaces on the aircraft. The aircraft is analyzed theoretically for its aerodynamic characteristics to aid the design of the piezoelectric control surfaces. A vortex lattice analysis complemented the database of aerodynamic derivatives used to analyze control response. Steady-state roll rates were measured in a wind tunnel and were compared to a similar aircraft with servomotor actuated control surfaces. The theoretical analysis and wind tunnel testing demonstrated the stability and control authority of the concept, culminating in the first flight of the completely Macro-Fiber Composite controlled aircraft on 29 April 2010. An electric motor-driven propulsion system is used to generate thrust, and all systems are powered with a single lithium polymer battery. This vehicle became the first completely Macro-Fiber Composite controlled, flight tested aircraft. It is also known to be the first fully solid-state piezoelectric material controlled, nontethered, flight tested fixed-wing aircraft.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3