Vibration analysis of a partially covered beam with a shear thickening fluid core

Author:

Li Weijun1,Lin Kun1ORCID,Wang Kaifa1,Wang Baolin1

Affiliation:

1. Harbin Institute of Technology Shenzhen Campus, Harbin Institute of Technology, Harbin, P.R. China

Abstract

The vibration responses of a sandwich beam with partially covered by shear thickening fluid (STF) layer under an impact load are investigated. The nonlinear governing equations of the flexural vibration are derived based on extended Hamilton’s principle and are solved by the finite difference method. The model is then validated and used to develop a complete parametric study of partially covered beams with the STF-filled core to properly design and place the STF patch. It is found that, for the first vibration mode, maximum damping, and the smallest change in the natural frequency are achieved when the coverage length of the partial STF patch exceeds 50% and the center of the patch is positioned at 56.25% from the left edge. For the second vibration mode, the coverage length is 37.5% and the center of the patch is located at 75% from the left edge of the beam. Additionally, it has been observed that maintaining a thickness ratio of 0.75 between the constraining layer and the base beam leads to increased damping, while simultaneously minimizing alterations in the natural frequency of the original beam. The results can be used for the structural design of sandwich beams partially covered by STF.

Funder

Shenzhen Science and Technology Innovation Program

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3