A wrapper feature selection approach for efficient modelling of gully erosion susceptibility mapping

Author:

Rouhani Hamed1ORCID,Fathabadi Aboalhasan1,Baartman Jantiene2

Affiliation:

1. Gonbad Kavous University, Iran

2. Soil Physics and Land Management Group, Wageningen University, the Netherlands

Abstract

Identifying the vulnerability level of an area to soil erosion, particularly gully erosion, is key to the development of an efficient management strategy for policymakers. While efforts into susceptibility mapping of natural disasters have grown in recent years, understanding the most relevant predictive causal factors is still a challenge. As the selection of these factors, among many potentially relevant factors, is an important part of the model selection process, we propose a hybrid intelligent approach for the optimal selection of a set of relevant factors based on logistic regression (LR) and genetic algorithms. In order to verify the effectiveness of the proposed approach, this study also identified areas that were highly susceptible to gully erosion using three different classifiers – namely, the LR, support vector machine (SVM) and k-nearest neighbours (k-NN) techniques. We tested the approach in the Yeli Bedrag watershed in north-eastern Golestan province, Iran. The results showed that the elevation, distance to fault, slope and the index of connectivity were the most important causal factors affecting the successful prediction of gully occurrence. Comparison of maximum True Skill Statistic values showed that increased model sophistication did not necessarily result in a higher level of model performance. In terms of performance, k-NN was superior to the SVM and LR methods. This method can be effectively used for gully erosion susceptibility (GES) zonation in the study area, which is very important to support spatial planning to initiate designing mitigation strategies and conservation needs over a large area, or to plan additional conservation efforts and relocate soil conservation plans. In conclusion, our findings indicate that by incorporating the proposed hybrid intelligent approach, the number of relevant factors for GES mapping was reduced, while classification accuracy was increased.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3