Rainfall intensity in geomorphology: Challenges and opportunities

Author:

Dunkerley David1ORCID

Affiliation:

1. School of Earth Atmosphere and Environment, Faculty of Science, Monash University, Victoria, Australia

Abstract

Rainfall arrival at the land surface drives or influences many geomorphic processes. These range from the mechanisms through which vegetation transforms rain into erosive gravity drops or stemflow, infiltration and water partitioning at the soil surface, the drop-impact sealing of soil surfaces, splash, sheet, and gully erosion, and triggering of the various forms of mass movement including landslides and debris flows. Rainfall intensity is a key influence on many of these mechanisms but is not a straightforward parameter to quantify, partly owing to the customary aggregation of rainfall data to hourly or other clock-time totals. This aggregation conceals intensity fluctuations including erosive ‘intensity bursts’ as well as the intermittency of rainfall. Nevertheless, much research shows that rainfall intensity over short time periods – 10–30 minutes – has great explanatory power. Much of our understanding of the influence of rainfall intensity is based on rainfall simulation experiments, but the value of the findings is limited because simulation is normally carried out using a high and constant rainfall intensity, quite unlike natural rainfall. This has limited our ability to build an understanding of the other important aspects of rainfall intensity, including, critically, its time variation and changed character among different environments – arid, temperate, or tropical. Thus, significant challenges and opportunities remain in the exploration of rainfall intensity in relation to geomorphology and geomorphic processes.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3