Affiliation:
1. University of Sheffield, UK
Abstract
The dust cycle can play an important role in the land–atmosphere–ocean system through interaction with biogeochemical cycles and direct and indirect radiative forcing of the atmosphere. One of the limiting factors for existing global models of dust transport, atmospheric processing and deposition is the quality and availability of data to allow evaluation and validation of emission schemes against in situ data from source regions. This review provides a critical overview of recent studies of aeolian processes from within or on dust sources, and focuses on studies dealing with retrieval of dust emission data, quantification of the contribution and variability of dust emissions from specific landforms, and the use of remote sensing data to reconcile dust storm inventories by direct comparison to dust source geomorphology. These case studies highlight significant advances in both field measurement and regional understanding of important components of the dust cycle derived through use of remote sensing data. However, recent research also demonstrates that most source regions exhibit significant spatial and temporal heterogeneity in dust emissions from candidate geomorphologies, which has direct implications for strategies aimed at inclusion of dust emission schemes at a scale relevant to climate models. To accommodate these factors and other significant scaling issues, additional research is needed to increase our quantification of a wider range of dust source types and geomorphological contexts over longer time periods.
Subject
General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献