Remote sensing of the mountain cryosphere: Current capabilities and future opportunities for research

Author:

Taylor Liam S1ORCID,Quincey Duncan J1,Smith Mark W1,Baumhoer Celia A2,McMillan Malcolm3,Mansell Damien T4

Affiliation:

1. University of Leeds, UK

2. German Aerospace Centre (DLR), Germany

3. Lancaster University, UK

4. University of Exeter, UK

Abstract

Remote sensing technologies are integral to monitoring the mountain cryosphere in a warming world. Satellite missions and field-based platforms have transformed understanding of the processes driving changes in mountain glacier dynamics, snow cover, lake evolution, and the associated emergence of hazards (e.g. avalanches, floods, landslides). Sensors and platforms are becoming more bespoke, with innovation being driven by the commercial sector, and image repositories are more frequently open access, leading to the democratisation of data analysis and interpretation. Cloud computing, artificial intelligence, and machine learning are rapidly transforming our ability to handle this exponential increase in data. This review therefore provides a timely opportunity to synthesise current capabilities in remote sensing of the mountain cryosphere. Scientific and commercial applications were critically examined, recognising the technologies that have most advanced the discipline. Low-cost sensors can also be deployed in the field, using microprocessors and telecommunications equipment to connect mountain glaciers to stakeholders for real-time monitoring. The potential for novel automated pipelines that can process vast volumes of data is also discussed, from reimagining historical aerial imagery to produce elevation models, to automatically delineating glacier boundaries. Finally, the applications of these emerging techniques that will benefit scientific research avenues and real-world societal programmes are discussed.

Funder

NERC SPHERES Doctoral Training Partnership

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3