Exploring the relationships between 3D urban landscape patterns and PM2.5 pollution using the multiscale geographic weighted regression model

Author:

Duan Haoyan12,Cao Qian12ORCID,Wang Lunche12ORCID,Gu Xihui3,Ashrafi Khosro4

Affiliation:

1. Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China

2. State Key Laboratory of Biogeology and Environmental Geology, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China

3. Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

4. Faculty of Environment, University of Tehran, Tehran, Iran

Abstract

Fine particulate matter (PM2.5) is a major source of air pollution and exerts serious impacts on human health. The 3D urban landscape patterns can significantly affect the diffusion and emissions of PM2.5. However, studies on the relationships between 3D urban landscape patterns and PM2.5 pollution across different seasons remain understudied. With the ground-level air pollutants estimated by the remote sensing and fine-scale building information, this study applied the multiscale geographically weighted regression model to explore such relationships. Wuhan, the largest metropolis in Central China, was selected as the study area for the application of our methodology. The results showed that the direction, degree, and scale of the effect of 3D urban landscape patterns on PM2.5 pollution varied across seasons. For building height, the standard deviation of building height had a significant positive correlation with PM2.5 all year round. For building density, the building count density showed a significant positive correlation with PM2.5 in general, with the bandwidth in winter and autumn smaller than in spring and summer. The building plan area fraction exerted both positive and negative influences on PM2.5, dependent on season and location. The bandwidth of it gradually increased from spring to winter, with the effect changing from local to regional scale. For building volume, the floor area ratio showed a significant negative correlation with PM2.5 in winter and autumn, and a localized effect was found, especially in winter. The findings of this study provide practical implications for urban planning and policy making to mitigate PM2.5 pollution in the rapidly urbanizing regions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3