Measuring the spatial arrangement of urban vegetation and its impacts on seasonal surface temperatures

Author:

Fan Chao1,Myint Soe W.1,Zheng Baojuan1

Affiliation:

1. Arizona State University, USA

Abstract

Urban forestry is an important component of the urban ecosystem that can effectively ameliorate temperatures by providing shade and through evapotranspiration. While it is well known that vegetation abundance is negatively correlated to land surface temperature, the impacts of the spatial arrangement (e.g. clustered or dispersed) of vegetation cover on the urban thermal environment requires further investigation. In this study, we coupled remote sensing techniques with spatial statistics to quantify the configuration of vegetation cover and its variable influences on seasonal surface temperatures in central Phoenix. The objectives of this study are to: (1) determine spatial arrangement of green vegetation cover using continuous spatial autocorrelation indices combined with high-resolution remotely-sensed data; (2) examine the role of grass and trees, especially their spatial patterns on seasonal and diurnal land surface temperatures by controlling the effects of vegetation abundance; (3) investigate the sensitivity of the vegetation–temperature relationship at varying geographical scales. The spatial pattern of urban vegetation was measured using a local spatial autocorrelation index—the local Moran’s Iv. Results show that clustered or less fragmented patterns of green vegetation lower surface temperature more effectively than dispersed patterns. The relationships between the local Moran’s Iv and surface temperature are evidenced to be strongest during summer daytime and lowest during winter nighttime. Results of multiple regression analyses demonstrate significant impacts of spatial arrangement of vegetation on seasonal surface temperatures. Our analyses of vegetation spatial patterns at varying geographical scales suggest that an area extent of ˜200 m is optimal for examining the vegetation–temperature relationship. We provide a methodological framework to quantify the spatial pattern of urban features and to examine their impacts on the biophysical characteristics of the urban environment. The insights gained from our study results have significant implications for sustainable urban development and resource management.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3