Snow albedo feedback

Author:

Thackeray Chad W.1,Fletcher Christopher G.1

Affiliation:

1. University of Waterloo, Canada

Abstract

Over the past decade, substantial progress has been made in improving our understanding of surface albedo feedbacks, where changes in surface albedo from warming (cooling) can cause increases (decreases) in absorbed solar radiation, amplifying the initial warming (cooling). The goal of this review is to synthesize and assess recent research into the feedback caused by changing continental snow cover, or snow albedo feedback (SAF). Four main topics are evaluated: (i) the importance of SAF to the global energy budget, (ii) estimates of SAF from various data sources, (iii) factors influencing the spread in SAF, and (iv) outstanding issues related to our understanding of the physical processes that control SAF (and their uncertainties). SAF is found to exert a small influence on a global scale, with amplitude of ∼ 0.1 Wm−2 K−1, roughly 7% of the strength of water vapor feedback. However, SAF is an important driver of regional climate change over Northern Hemisphere (NH) extratropical land, where observation-based estimates show a peak feedback of around 1% decrease in surface albedo per degree of warming during spring. Viewed collectively, the current generation of climate models represent this process accurately, but several models still use outdated parameterizations of snow and surface albedo that contribute to biases that impact the simulation of SAF. This discussion serves to synthesize and evaluate previously published literature, while highlighting promising directions being taken at the forefront of research such as high resolution modeling and the use of large ensembles.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3