Biological and mechanical characterization of biodegradable carbonyl iron powder/polycaprolactone composite material fabricated using three-dimensional printing for cardiovascular stent application

Author:

Singh Jasvinder1,Kaur Tejinder2,Singh Neetu2,Pandey Pulak Mohan1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India

2. Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India

Abstract

Biological and mechanical properties of biodegradable polymeric composite materials are strongly influenced by the choice of appropriate reinforcement in the polymer matrix. Non-compatibility of material in the vascular system could obstruct the way of the biological fluids. The concept of development of polymeric composite material for vascular implants is to provide enough support to the vessel and to restore the vessel in the natural state after degradation. In this research, the polycaprolactone composite materials (carbonyl iron powder/polycaprolactone) were developed by reinforcement of the 0%–2% of carbonyl iron powder using the solvent cast three-dimensional printing technique. The physicochemical properties of developed composites were characterized in conjunction with mechanical and biological properties. The mechanical characterizations were assessed by uniaxial tensile testing as well as flexibility testing. The results of mechanical testing assured that carbonyl iron powder/polycaprolactone composites have shown desirable properties for vascular implants. Besides the mechanical characterization, in vitro biological investigations of carbonyl iron powder/polycaprolactone were done for analyzing blood compatibility and cytocompatibility. The results revealed that the materials developed were biocompatible, less hemolytic, and having non-thrombogenic properties indicating the promising applications in the field of cardiovascular applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3