Importance of surgical assembly technique on the engagement of 12/14 modular tapers

Author:

Wade A1ORCID,Webster F1,Beadling AR1,Bryant MG1

Affiliation:

1. School of Mechanical Engineering, Institute of Functional Surfaces, University of Leeds, Leeds, UK

Abstract

Fretting-corrosion at the modular taper junction in total hip replacements (THR), leading to implant failure, has been identified as a clinical concern and has received increased interest in recent years. There are many parameters thought to affect the performance of the taper junction, with the assembly process being one of the few consistently identified to have a direct impact. Despite this, the assembly process used by surgeons during THR surgery differs from a suggested ‘ideal’ process. For example, taper junctions of cutting tools should be pushed together rather than impacted, while ensuring as much concentricity as possible between the male and female taper and loading axis. This study devised six simple assembly methodologies to investigate how surgical variations affect the success of the compressive fit achieved at the taper interface compared to a controlled assembly method, designed to represent a more ‘ideal’ scenario. Key findings from this study suggest that a more successful and repeatable engagement can be achieved by quasi-statically loading the male and female taper concentrically with the loading axis. This was shown by a greater disassembly to assembly force ratio of 0.626 ± 0.07 when assembled using the more ‘ideal’ process, compared to 0.480 ± 0.05 when using a method closer to that used by a surgeon intraoperatively. Findings from this study can be used to help inform new surgical instrumentation and an improved surgical assembly method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference54 articles.

1. The influence of the centre of rotation on implant survival using a modular stem hip prosthesis

2. Do You Have to Remove a Corroded Femoral Stem?

3. National Joint Registry for England, Wales North Ireland and Isle of Man. 15th annual report 2018, 2017, p.218, http://www.njrcentre.org.uk/njrcentre/default.aspx

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3