Mechanical behavior of porcine thoracic aorta in physiological and supra-physiological intraluminal pressures

Author:

Rastgar Agah Mobin1,Laksari Kaveh1,Assari Soroush1,Darvish Kurosh1

Affiliation:

1. Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA

Abstract

Understanding the mechanical behavior of aorta under supra-physiological loadings is an important aspect of modeling tissue behavior in various applications that involve large deformations. Utilizing inflation–extension experiments, the mechanical behavior of porcine descending thoracic aortic segments under physiological and supra-physiological intraluminal pressures was investigated. The pressure was changed in the range of 0–70 kPa and the deformation of the segment was determined in three dimensions using a custom-made motion capture system. An orthotropic Fung-type constitutive model was characterized by implementing a novel computationally efficient framework that ensured material stability for numerical simulations. The nonlinear rising trend of circumferential stretch ratio [Formula: see text] from outer toward inner wall was significantly increased at higher pressures. The increase in [Formula: see text] from physiological pressure (13 kPa) to 70 kPa was 13% at the outer wall and 22% at the inner wall; in this pressure range, the longitudinal stretch ratio [Formula: see text] increased 20%. A significant nonlinearity in the material behavior was observed as in the same pressure range, and the circumferential and longitudinal Cauchy stresses at the inner wall were increased 16 and 18 times, respectively. The overall constitutive model was verified in several loading paths in the [Formula: see text] space to confirm its applicability in multi-axial loading conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3