Experimental and numerical comparisons between finite element method, element-free Galerkin method, and extended finite element method predicted stress intensity factor and energy release rate of cortical bone considering anisotropic bone modelling

Author:

Kumar Ajay1,Shitole Pankaj1,Ghosh Rajesh1ORCID,Kumar Rajeev1,Gupta Arpan1

Affiliation:

1. School of Engineering, Indian Institute of Technology Mandi, Mandi, India

Abstract

Stress intensity factor and energy release rate are important parameters to understand the fracture behaviour of bone. The objective of this study is to predict stress intensity factor and energy release rate using finite element method, element-free Galerkin method, and extended finite element method and compare these results with the experimentally determined values. For experimental purpose, 20 longitudinally and transversely fractured single-edge notched bend specimens were prepared and tested according to ASTM standard. All specimens were tested using the universal testing machine. For numerical simulations (finite element method, element-free Galerkin method, and extended finite element method), two-dimensional model of cortical bone was developed by assuming plane strain condition. Material properties of the cortical bone were considered as anisotropic and homogeneous. The values obtained through finite element method, element-free Galerkin method, and extended finite element method are well corroborated to experimentally determined values and earlier published data. However, element-free Galerkin method and extended finite element method predict more accurate results as compared to finite element method. In the case of the transversely fractured specimen, the values of stress intensity factor and energy release rate were found to be higher as compared to the longitudinally fractured specimen, which shows consistency with earlier published data. This study also indicates element-free Galerkin method and extended finite element method predicted stress intensity factor and energy release rate results are more close to experimental results as compared to finite element method, and therefore, these methods can be used in the different field of biomechanics, particularly to predict bone fracture.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3