Thermal entrance problem for blood flow inside an axisymmetric tube: The classical Graetz problem extended for Quemada’s bio-rheological fluid with axial conduction

Author:

Saeed Khan Muhammad Waris1ORCID,Ali Nasir1,Bég O Anwar2

Affiliation:

1. Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan

2. Multiphysical Engineering Sciences, Aeronautical and Mechanical Engineering Department, Salford University, Salford, UK

Abstract

The heat-conducting nature of blood is critical in the human circulatory system and features also in important thermal regulation and blood processing systems in biomedicine. Motivated by these applications, in the present investigation, the classical Graetz problem in heat transfer is extended to the case of a bio-rheological fluid model. The Quemada bio-rheological fluid model is selected since it has been shown to be accurate in mimicking physiological flows (blood) at different shear rates and hematocrits. The steady two-dimensional energy equation without viscous dissipation in stationary regime is tackled via a separation of variables approach for the isothermal wall temperature case. Following the introduction of transformation variables, the ensuing dimensionless boundary value problem is solved numerically via MATLAB based algorithm known as bvp5c (a finite difference code that implements the four-stage Lobatto IIIa collocation formula). Numerical validation is also presented against two analytical approaches namely, series solutions and Kummer function techniques. Axial conduction in terms of Péclet number is also considered. Typical values of Reynolds number and Prandtl number are used to categorize the vascular regions. The graphical representation of mean temperature, temperature gradient, and Nusselt numbers along with detail discussions are presented for the effects of Quemada non-Newtonian parameters and Péclet number. The current analysis may also have potential applications for the development of microfluidic and biofluidic devices particularly which are used in the diagnosis of diseases in addition to blood oxygenation technologies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference40 articles.

1. Shampine L F, Kierzenka J.A BVP solver that controls residual and error (MATLAB bvp5c), J. Numer. Anal. Ind. Appl. Math. 2008; 3(1/2): 27–41.

2. Pal S. Numerical Methods: Principles, Analyses and Algorithms, Oxford University Press, India (2009).

3. Adaptive Mesh Selection Strategies for Solving Boundary Value Problems

4. Etude exp�rimentale IN VITRO du comportement rh�ologique du sang en r�gime transitoire � faible vitesse de cisaillement

5. Rheological hysteresis of blood at low shear rate1

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3