Identifying the parameters of viscoelastic model for a gel-type material as representative of cardiac muscle in dynamic tests

Author:

Siami Majid1ORCID,Jahani Kamal1,Rezaee Mousa1

Affiliation:

1. Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

Abstract

In this paper, mechanical parameters of a calf heart muscle are identified and a gel-type material as the representative of the cardiac muscle in dynamic tests is introduced. The motivation of this study is to introduce a replacement material of the heart muscle to use in experimental studies of the leadless pacemaker. A particular test setup is developed to capture the experimental data based on the stress relaxation test method where its outputs are time histories of the force and displacement. The standard linear solid model is used for mathematical modeling of the heart muscle sample and a gel-type material specimen namely α-gel. Five tests with different strain history [Formula: see text] are performed by regarding and disregarding the influence of the initial ramp of the loading. The mechanical parameters of the standard linear solid model were identified with precise curve fitting. Consideration of the initial ramp significantly influences the consequences and they are so close to their experimental counterparts. The identified parameters of the standard linear solid model by regarding the influence of the initial ramp for the gel-type material are within an acceptable range for the viscoelastic properties of the calf heart tissue. These results show that the gel-type material has the potential to represent the cardiac muscle in the leadless pacemaker experimental studies. Dynamic mechanical analysis is used to characterize the dynamic viscoelastic properties for the gel by utilizing the identified parameters with taking into account the initial ramp in the frequency domain. Results show that Storage modulus, Loss modulus, and Loss tangent are strongly frequency-dependent especially at low-frequency around the heartbeat frequency range (0–2 Hz).

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3