Influence of the basilar membrane shape and mechanical properties in the cochlear response: A numerical study

Author:

Areias Bruno1ORCID,Parente Marco12,Gentil Fernanda3ORCID,Jorge Renato Natal12

Affiliation:

1. INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal

2. FEUP, Faculty of Engineering, University of Porto, Porto, Portugal

3. Escola Superior de Saúde, Clínica ORL – Dr. Eurico de Almeida, WIDEX, Porto, Portugal

Abstract

Hearing impairment is one of the most common health disorders, affecting individuals of all ages, reducing considerably their quality of life. At present, it is known that during an acoustic stimulation a travelling wave is developed inside the cochlea. Existing mathematical and numerical models available in the literature try to describe the shape of this travelling wave, the majority of them present a set of approaches based on some limitations either or both of the mechanical properties used and the geometrical description of the realistic representation. The present numerical study highlights the distinctions of using a spiral model of the cochlea, by comparing the obtained results with a straight, or simplified model. The influence of the implantation of transversely isotropic mechanical models was also studied, by comparing the basilar membrane with isotropic and transversely isotropic mechanical properties. Values of the root mean square error calculated for all models show a greater proximity of the cochlear mapping to the Greenwood function when the basilar membrane is assumed with transversely isotropic mechanical properties for both straight and spiral model. The root-mean square errors calculated were: 2.05, 1.70, 2.72, 2.08 mm, for the straight-isotropic, straight-transversely isotropic, spiral-isotropic and spiral-transversely isotropic model, respectively.

Funder

fundacao para a ciencia e a tecnologia

Portuguese Foundation of Science and Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on damage of the macrostructure of the cochlea under the impact load;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2023-11-13

2. A bioinspired configurable cochlea based on memristors;Frontiers in Neuroscience;2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3