Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel

Author:

Jia Yuanyuan12,Wang Xiaohong2,Huo Mingming3,Zhai Xiaoli4,Li Fei4,Zhong Cheng1

Affiliation:

1. Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, TEDA, Tianjin, P. R. China

2. College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, TEDA, Tianjin, P. R. China

3. Panjin Yulong Environment Engineering Industry Co., Ltd, Panjin, Liaoning, P. R. China

4. College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, TEDA, Tianjin, P. R. China

Abstract

Composites of chitosan chloride and bacterial cellulose were successfully prepared by in situ method. Composites of bacterial cellulose/chitosan and pristine bacterial cellulose were investigated by means of scanning electron microscope, atomic force microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and bacteriostatic test. The crystallization of bacterial cellulose was interfered and weakened by the chitosan chloride included in the growth media, resulting in lower crystallinity index and thermal stability. And interaction between two polymers is verified by the thermal gravimetric analysis. The ultrafine nanofibril network structure of bacterial cellulose was retained by the composites, while the diameters were larger and the aperture inside were smaller than those of pristine bacterial cellulose, as shown through scanning electron microscope and atomic force microscope figures. The antimicrobial effects were enhanced by the increasing concentration of chitosan in composites. All the characteristics of the composites provide evidence for the miscibility of chitosan and cellulose. Their biocompatibility is proved through our published data. It is strongly indicated that bacterial cellulose–chitosan nanocomposites have great potential in tissue engineering or pharmaceutical applications in the near future.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3