Affiliation:
1. Department of Toxicology and Safety Assessment, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877
2. Laboratory of Environmental Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
Abstract
Heterozygous p53 +/- transgenic mice are being studied for utility as a short-term alternative model to the 2-yr rodent carcinogenicity bioassay. During a 26-wk study to assess the potential carcinogenicity of oxymetholone using p-cresidine as a positive control, glass/ polypropylene microchips (radio transponder identification devices) were subcutaneously implanted into male and female p53+/- mice. During week 15, the first palpable mass was clinically observed at an implant site. This rapidly growing mass virtually quadrupled in size by week 25. Microscopic examination of all implant sites revealed that 18 of 177 animals had a subcutaneous histologically malignant sarcoma. The neoplasms were characterized as undifferentiated sarcomas unrelated to drug treatment, as indicated by the relatively even distribution among dose groups, including controls. An unusual preneoplastic mesenchymal change characterized by the term "mesenchymal dysplasia" was present in most groups and was considered to be a prodromal change to sarcoma development. The tumors were observed to arise from dysplastic mesenchymal tissue that developed within the tissue capsule surrounding the transponder. The preneoplastic changes, including mesenchymal dysplasia, appeared to arise at the transponder's plastic anchoring barb and then progressed as a neoplasm to eventually surround the entire microchip. Capsule membrane endothelialization, inflammation, mesenchymal basophilia and dysplasia, and sarcoma were considered unequivocal preneoplastic/neoplastic responses to the transponder and were not related to treatment with either oxymetholone or p-cresidine.
Subject
Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献