Influence of resistance spot welding process parameters on dissimilar austenitic and duplex stainless steel welded joints

Author:

Krishnan Vignesh1ORCID,Ayyasamy Elayaperumal2,Paramasivam Velmurugan3

Affiliation:

1. Department of Mechanical Engineering, PSNA College of Engineering & Technology, Dindigul, India

2. Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai, India

3. Department of Automobile Engineering, RVS School of Engineering & Technology, Dindigul, India

Abstract

This paper examines the impact of welding parameters on tensile shear fracture load, nugget geometry and microstructure of resistance spot welds (RSW) of austenitic stainless steel AISI 316 L and duplex stainless steel 2205 under lap shear loading condition. The macroscopic examination resulted that many of the nugget lengths were nearer to and higher than the AWS recommended value 4√t and failed at higher tensile shear load. Nugget height for DSS 2205 side was higher in comparison with AISI 316 L due to higher thermal conductivity of duplex stainless steel. Three welding parameters mainly welding current of 9 kA, heating cycle of 9 and electrode tip diameter of 6 mm were discovered as most effectual parameters on the tensile shear load and microstructure of weldments. Heterogeneous hardness was observed in the fusion zone due to the transition of equiaxed to columnar grains takes place in the both sides of nugget edge. DSS HAZ nearby BM observed higher hardness and ASS HAZ nearby BM reported lower hardness. WMZ Microstructure confirmed that thickness of austenite layers increased with heat input. Also, an unmixed zone in the microstructure identified as HAZ which contains delta ferrite. Scanning Electron Microscope (SEM) images in the nugget zone for different welding parameters confirmed that Intra-Granular Austenite (IGA) highly developed at higher welding current. SEM fractrograph for the tensile sheared specimens at higher and lower heat input confirmed the ductile type fracture even failed at Inter-Facial (IF) mode. Nugget area and nugget hardness were positively correlated with Tensile Shear Fracture Load (TSFL).

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3