Comparison of the application of smart electrorheological and magnetorheological fluid cores to damp sandwich panels’ vibration behavior, based on a novel higher-order shear deformation theory

Author:

Keshavarzian Mehdi1,Najafizadeh Mohammad M1,Khorshidi Korosh2ORCID,Yousefi Peyman1,Alavi Seyed Majid3

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, Islamic Azad University, Arak, Iran

2. Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, Iran

3. Department of Mathematics, Islamic Azad University, Arak, Iran

Abstract

Background: Magnetorheological and electrorheological materials show variations in their rheological properties when subjected to magnetic and electric fields. We analyzed the vibration control behavior of a sandwich panel with elastic face sheets and an electrorheological or magnetorheological fluid core, using an improved higher-order theory. The theory was applied to the analysis of the structure's components as a combination of exponential, trigonometric, and polynomial functions. The core's flexibility was analyzed based on Frostig's second model, which has attracted material science researchers’ attention. Methods: Using the new theory, we analyzed the transverse shear and rotary inertia effects of the cover sheets. The governing equations and boundary conditions were derived by Hamilton's principle. The natural frequencies and loss factors were derived by solving the eigenvalue problem. The effects of changing the geometric parameters, the thickness of the magnetorheological or electrorheological layer, and thickness ratios on the vibration behavior of the panel were determined. Results: The panel's natural frequencies increased when the magnetic or electric field strength, and the panel's aspect ratio increased. It decreased when the core to panel thickness ratio increased. The magnetorheological material showed higher strength and lower sensitivity to external impurities than did the electrorheological material. Conclusions: We conclude that the magnetorheological materials minimize the structure's vibration at high-frequency operation, and the electrorheological materials are optimal for minimizing the structure's vibration at lower frequency operation. The findings of this study are useful to better understand the vibration behavior of sandwich panels with laminates under free vibration conditions.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3