Enhancing fault diagnosis of undesirable events in oil & gas systems: A machine learning approach with new criteria for stability analysis and classification accuracy

Author:

Sahraoui Mohammed Amine1ORCID,Rahmoune Chemseddine2ORCID,Zair Mohamed2,Gougam Fawzi2ORCID,Damou Ali2

Affiliation:

1. Systems Engineering and Telecommunications Laboratory (LIST), University M’hamed BOUGARA, Boumerdes, Algeria

2. Solid Mechanics and Systems Laboratory (LMSS), University M’hamed Bougara, Boumerdes, Algeria

Abstract

Petroleum serves as a cornerstone of global energy supply, underpinning economic development. Consequently, the effective detection of faults in oil and gas (O&G) wells is of paramount importance. In response to the limitations observed in prior research, this study presents an innovative fault diagnosis system, rooted in machine learning techniques. Our approach encompasses a comprehensive analysis, incorporating stability assessment via standard deviation (STD), and a meticulous evaluation of accuracy and stability for distinct fault scenarios. By integrating data preprocessing, feature selection methods, and deploying a robust random forest classifier, our model achieves a substantial enhancement in fault classification accuracy and stability. Extensive experimentation substantiates the superiority of our approach, surpassing the performance of previous studies that predominantly emphasized overall accuracy while disregarding stability analysis. Notably, our model attains remarkable accuracies, notably achieving a flawless 100% accuracy for scenario 3 faults. Detailed examination of mean accuracies and STDs further reinforces the precision and consistency of our model's predictive capabilities. Additionally, a qualitative assessment underscores the practical utility and reliability of our model in accurately identifying critical fault types. This research significantly advances fault detection methodologies within the O&G industry, providing valuable insights for decision-making systems in oil well operations.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3