Fault detection of automobile suspension system using decision tree algorithms: A machine learning approach

Author:

Arun Balaji P1,Sugumaran V1ORCID

Affiliation:

1. School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai Campus, Chennai, India

Abstract

The study aims to detect multiple faults that are exhibited by suspension system components during prolonged usage. Faults such as strut worn out, strut external damage, strut mount fault, lower arm ball joint fault, lower arm bush worn out and tie rod ball joint fault were considered in this study. A novel approach is proposed in the present study that involves vibration signals and machine learning techniques to identify various suspension system faults. Vibration signals were acquired for different fault conditions (as mentioned above) at three different load conditions by a specially fabricated experimental setup. Statistical features were extracted from the acquired vibration signals from which the most significant features were selected using J48 decision tree algorithm. The selected features were provided as input to the tree-based family of algorithms to determine the best in class classification algorithm for suspension fault diagnosis. The results obtained enumerate that the random forest classifier produces the best classification accuracy for all the load conditions (no load, half load, and full load) with values of 95.88%, 94.88%, and 92.01%, respectively. Finally, the performance of the proposed classification model is compared with other state-of-the-art machine learning classifiers.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3