Time-varying stiffness model of spur gear considering the effect of surface morphology characteristics

Author:

Liu Zhifeng1,Zhang Tao1,Zhao Yongsheng1ORCID,Bi Shuxin1

Affiliation:

1. Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, PR China

Abstract

The nonuniform cantilever beam and Hertzian contact model have been widely used to derive the mesh stiffness of spur gear assuming that the contact surface is absolutely frictionless. However, studies have confirmed that machined surfaces are rough in microscale and can be simulated by the Weierstrass–Mandelbort function. In order to get a reasonable and precise mesh stiffness model, the M-B contact model and finite element method are combined to express the local contact stiffness Kh. Through the simulation and comparison, the analytical finite element method is proved to be consistent with the traditional models and introduces the roughness parameters of machined tooth surface into the meshing process. Furthermore, the results also show that it is advantageous to improve the total mesh stiffness by increasing the fractal dimension D and input torque T as well as decreasing the roughness parameter G. In this paper, a relationship is built between the total mesh stiffness of gear sets with tooth surface characters and input torque, which can be a guidance in the design of the tooth surface parameters and the choice of the processing method in the future.

Funder

National Natural Science Foundation of China

Beijing science and technology major project

Jing-Hua Talents Project of Beijing University of Technology

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3