Affiliation:
1. Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, PR China
Abstract
The nonuniform cantilever beam and Hertzian contact model have been widely used to derive the mesh stiffness of spur gear assuming that the contact surface is absolutely frictionless. However, studies have confirmed that machined surfaces are rough in microscale and can be simulated by the Weierstrass–Mandelbort function. In order to get a reasonable and precise mesh stiffness model, the M-B contact model and finite element method are combined to express the local contact stiffness Kh. Through the simulation and comparison, the analytical finite element method is proved to be consistent with the traditional models and introduces the roughness parameters of machined tooth surface into the meshing process. Furthermore, the results also show that it is advantageous to improve the total mesh stiffness by increasing the fractal dimension D and input torque T as well as decreasing the roughness parameter G. In this paper, a relationship is built between the total mesh stiffness of gear sets with tooth surface characters and input torque, which can be a guidance in the design of the tooth surface parameters and the choice of the processing method in the future.
Funder
National Natural Science Foundation of China
Beijing science and technology major project
Jing-Hua Talents Project of Beijing University of Technology
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献