Densification behaviour of laser powder bed fusion processed Ti6Al4V: Effects of customized heat treatment and build direction

Author:

Pathania Akshay1,Subramaniyan Anand Kumar1ORCID,Bommanahalli Kenchappa Nagesha2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Jammu, Jammu, J&K, India

2. Gas Turbine Research Establishment, Defense Research and Development Organization, Bangalore, KA, India

Abstract

The present work exploits the customized heat treatment, and laser powder bed fusion process to build direction effects on the densification behaviour and microstructural development in Ti6Al4V alloy. Optical microscopy evaluates the porosity and microstructure in different conditions. Further, the porosities are classified as inter-micropores (size < 10 µm) and super-micropores (size > 10 µm). Classification and quantifications of the porosities of laser powder bed fusion processed Ti6Al4V alloy under both directions due to customized heat treatment. The effect of customized heat treatment, the corresponding pore self-healing mechanism, and microstructure refinement on laser powder bed fusion-processed Ti6Al4V alloy were discussed. Moreover, the X-ray diffraction technique was used to analyse the different phases during laser powder bed fusion and customized heat treatment. The elevated customized heat treatment helps to reduce the overall porosity by two times that of as-printed samples due to the sintering self-healing phenomenon. Interestingly, the super micropores observed in as-printed samples are reduced via customized heat treatment ∼ 44% in a horizontal direction and ∼ 46% in a vertical direction, respectively, which is favourable for enhancing mechanical properties. This is because reducing these micropores leads to improved ductility. The ductility of the customized heat treatment executed sample was ∼ 68% in a horizontal orientation and ∼180% in a vertical orientation. The isotropic index for ductility in as-printed Ti6Al4V in the horizontal and vertical directions is 0.61. In contrast, it is 0.97 for customized heat treatment in both orientations showing high isotropy for customized heat treatment samples compared to as-printed samples. This study reveals that the customized heat treatment technique can be beneficial in introducing isotropic microstructure and densifying the distinctive laser powder bed fusion components.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3