Reduced Dermis Thickness and AGE Accumulation in Diabetic Abdominal Skin

Author:

Niu Yiwen1,Cao Xiaozan1,Song Fei1,Xie Ting1,Ji Xiaoyun1,Miao Mingyuan1,Dong Jiaoyun1,Tian Ming1,Lin Yuan2,Lu Shuliang1

Affiliation:

1. Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples’ Republic of China

2. The First Affiliated Hospital of Guangxi Medical University, Guangxi, Peoples’ Republic of China

Abstract

Dermatological problems in diabetes might play an important role in the spontaneous ulcers and impaired wound healing that are seen in diabetic patients. Investigation of the cause of diabetic skin disorders is critical for identifying effective treatment. The abdominal full-thickness skin tissues of 33 patients (14 nondiabetic and 19 diabetic) were analyzed. The cell viability and malondialdehyde (MDA) production of fibroblasts were measured after advanced glycosylation end product (AGE)–bovine serum albumin (BSA) exposure. Cutaneous histological observation showed reduced thickness of the diabetic abdominal dermis with morphological characteristics of obscured multilayer epithelium and shortened, thinned, and disorganized collagen fibrils with focal chronic inflammatory cell infiltration when compared with controls of the same age. Accumulation of AGEs in diabetic skin was prominent. Less hydroxyproline, higher myeloperoxidase activity, and increased MDA content were detected in diabetic skin. In vitro, the time- and dose-dependent inhibitory effects of AGE-BSA on fibroblast viability as well as the fact that AGE-BSA could promote MDA production of fibroblasts were shown. It is shown that the accumulation of AGEs in diabetic skin tissue induces an oxidative damage of fibroblasts and acts as an important contributor to the thinner diabetic abdominal dermis. The authors believe that diabetic cutaneous properties at baseline may increase the susceptibility to injury, and diabetic wounds possess atypical origin in the repair process.

Publisher

SAGE Publications

Subject

General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3