Energy-efficient multi-objective scheduling algorithm for hybrid flow shop with fuzzy processing time

Author:

Zhou Binghai1ORCID,Liu Wenlong1

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai, P.R. China

Abstract

Increasing costs of energy and environmental pollution is prompting scholars to pay close attention to energy-efficient scheduling. This study constructs a multi-objective model for the hybrid flow shop scheduling problem with fuzzy processing time to minimize total weighted delivery penalty and total energy consumption simultaneously. Setup times are considered as sequence-dependent, and in-stage parallel machines are unrelated in this model, meticulously reflecting the actual energy consumption of the system. First, an energy-efficient bi-objective differential evolution algorithm is developed to solve this mixed integer programming model effectively. Then, we utilize an Nawaz-Enscore-Ham-based hybrid method to generate high-quality initial solutions. Neighborhoods are thoroughly exploited with a leader solution challenge mechanism, and global exploration is highly improved with opposition-based learning and a chaotic search strategy. Finally, problems in various scales evaluate the performance of this green scheduling algorithm. Computational experiments illustrate the effectiveness of the algorithm for the proposed model within acceptable computational time.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3