Force control in a parallel manipulator through virtual foundations

Author:

Bera Tarun Kumar1,Merzouki Rochdi1,Ould Bouamama Belkacem1,Samantaray Arun Kumar2

Affiliation:

1. LAGIS, Polytech’Lille, France

2. Department of Mechanical Engineering, Indian Institute of Technology, India

Abstract

An overwhelming controller provides robustness against uncertain parameters, disturbances and un-modelled dynamics. A simplified inverse dynamics model is used in the present paper to develop an overwhelming controller for a parallel manipulator (a Stewart platform), where the controller accommodates modelling uncertainties such as the simplifications made for development of the inverse model in order to improve the computational efficiency. Such a control strategy leads to good trajectory tracking accuracy in the presence of unknown disturbances. However, in addition to trajectory tracking performance, the controller for a Stewart platform should also be able to control or limit the interaction forces in applications such as robot assisted surgery and low-impact docking. The environmental forces can be accommodated during the interaction period by modulating the impedance at the interface of manipulator and environment through virtual flexible foundations. The positional error induced during the force control phase can be recovered during the free flight or idle phase. While this approach has been used successfully in the past to control serial manipulators, the closed loop kinematic architecture in a parallel manipulator introduces many difficulties. This paper proposes a modified overwhelming control scheme for parallel manipulators with compensations for interaction force control and positional error recovery. Bond graph modelling is used as an integrated model and controller development tool. Force controlled machining on a spherical surface, which is akin to a surgical operation, is considered as an example application of the developed control strategy. The simulation results from the bond graph model of the controlled Stewart platform are presented to demonstrate the performance of the developed hybrid position force controller.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3