Gyro motor fault classification model based on a coupled hidden Markov model with a minimum intra-class distance algorithm

Author:

Dong Lei12,Li Wei-min1,Wang Ching-Hsin3ORCID,Lin Kuo-Ping4ORCID

Affiliation:

1. School of Mechanical Engineering, Hebei University of Technology, Tianjin

2. Tianjin Navigation Instrument Research Institute, Tianjin

3. Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung

4. Institute of Innovation and Circular Economy, Asia University, Taichung

Abstract

In this study, we developed a fault classification model that combines a coupled hidden Markov model based on multi-channel information fusion with a minimum intra-class distance algorithm. This model relies on statistical features in the current time domain, which are the easiest features to extract for clustering. First, an algorithm is used to select and sequence the statistical features with the minimum intra-class distance in order to form feature vectors, which in turn enhance inter-class discrimination and feature reduction. Following reduction, the coupled hidden Markov model is used to perform classification. The coupled hidden Markov model was shown to reflect the coupling relationships between and among channels. We evaluated the efficacy of the proposed scheme by applying it to the diagnosis of faults in a gyro motor in three groups of experiments. Our results were compared with those obtained using a single-chain hidden Markov model and other intelligent fault diagnosis methods. The proposed scheme outperformed the other methods in terms of correct diagnosis rate, fluctuations in correct diagnosis rate, and excellent robustness against the effects of interference.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3