Affiliation:
1. Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
Abstract
Direct methanol fuel cells are one of the most promisingly critical fuel cell technologies for portable applications. Due to the strong dependency between actual operating conditions and electrical power, acquiring an explicit model becomes difficult. In this article, the behavioral model of direct methanol fuel cell is proposed with satisfactory accuracy, using only input/output measurement data. First, using the generated data which are tested on the direct methanol fuel cell, the frequency response of the direct methanol fuel cell is estimated as a primary model in lower accuracy. Then, the norm optimal iterative learning control is used to improve the estimated model of the direct methanol fuel cell with a predictive trial information algorithm. Iterative learning control can be used for controlling systems with imprecise models as it is capable of correcting the input control signal in each trial. The proposed algorithm uses not only the past trial information but also the future trials which are predicted. It is found that better performance, as well as much more convergence speed, can be achieved with the predicted future trials. In addition, applying the norm optimal iterative learning control on the proposed procedure, resulted from the solution of a quadratic optimization problem, leads to the optimal selection of the control inputs. Simulation results demonstrate the effectiveness of the proposed approach by practical data.
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献