Neural network–based optimal fault compensation control of the nonlinear multi-agent system and its application to UAVs formation flight

Author:

Duan Dandan1ORCID,Liu Chunsheng1,Dai Jiao2,Sun Jingliang3ORCID

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, P. R. China

2. Jiangsu Dongyin Intelligent Engineering Technology Research Institute Co., LTD, Nanjing, P. R. China

3. Beijing Institute of Technology, Beijing, P. R. China

Abstract

This article investigates the optimal consensus problem for unmanned aerial vehicle formation systems with actuator faults based on nonlinear multi-agent systems. Initially, for fault-free multi-agent system, the distributed optimal controllers are constructed based on the adaptive dynamic programming technique. A critic neural network is applied to approximate the solution of the nonlinear Hamilton–Jacobi–Bellman equations, in which the weight updating laws are built to guarantee the weight vectors of the critic neural network convergence. Second, the fault compensators and corresponding tuning laws are proposed to compensate for actuator faults. Through a combination of optimal controllers and fault compensators, the distributed optimal fault-tolerant controllers are obtained. Then, according to Lyapunov extension theorem, some stability criteria for ensuring the stability of the aircraft and the normal flight of the unmanned aerial vehicle formation are established in the event of an actuator failure. Finally, an example of an unmanned aerial vehicle formation system is introduced to verify the efficiency and reliability of the designed optimal fault-tolerant control scheme.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal course tracking control of USV with input dead zone based on adaptive fuzzy dynamic programing;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2024-09-14

2. Integrated fault detection filter and fault-tolerant control for the unmanned surface vehicle with deception attacks;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2024-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3