Model-free adaptive optimal control policy for Markov jump systems: A value iterations algorithm

Author:

Zhou Peixin1,Wen Jiwei1ORCID,Swain Akshya Kumar2,Luan Xiaoli1

Affiliation:

1. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, China

2. Department of Electrical, Computer and Software Engineering, University of Auckland, Auckland, New Zealand

Abstract

This article develops a model-free adaptive optimal control policy for discrete-time Markov jump systems. First, a two-player zero-sum game is formulated to obtain an optimal control policy that minimizes a cost function against the worst-case disturbance. Second, an action and mode-dependent value function is set up for zero-sum game to search such a policy with convergence guarantee rather than solving an optimization problem satisfying coupled algebraic Riccati equations. To be specific, motivated by the Bellman optimal principle, we develop an online value iterations algorithm to solve the zero-sum game, which is learning while controlling without any initial stabilizing policy. By this algorithm, we can achieve disturbance attenuation for Markov jump systems without knowledge of the system matrices. The adaptivity to slowly changing uncertainties can also be achieved due to the model-free feature and policy convergence. Finally, the effectiveness and practical potential of the algorithm are demonstrated by considering two numerical examples and a solar boiler system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-free optimal tracking policies for Markov jump systems by solving non-zero-sum games;Information Sciences;2023-11

2. Asynchronous control for Markov jump systems subject to actuator saturation and partial mode information;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3