Research on the dynamic characteristic of semi-active hydraulic damping strut

Author:

Wang Daoyong1ORCID,Zhang Wencan1,Chai Mu1ORCID,Zeng Xiaguang1

Affiliation:

1. School of Mechanical and Electrical Engineering, Foshan University, Foshan, China

Abstract

To reduce the vibration and shock of powertrain in the process of engine key on/off and vehicle in situ shift, a novel semi-active hydraulic damping strut is developed. The purpose of this paper is to study and discuss the dynamic stiffness model of the semi-active hydraulic damping strut. In this study, the dynamic characteristics of semi-active hydraulic damping strut were analyzed based on MTS 831 test rig first. Then, the dynamic stiffness model of semi-active hydraulic damping strut was established based on 2 degrees of freedom vibration system. In this research, a linear, fractional derivative and friction model was used to represent the nonlinear rubber bushing characteristic; the Maxwell model was used to describe the semi-active hydraulic damping strut body model; and the parameters of rubber bushing and semi-active hydraulic damping strut body were identified. The dynamic stiffness values were calculated with solenoid valve energized and not energized at amplitudes of 1 mm and 4 mm, which were consistent with experimental results in low-frequency range. Furthermore, the simplified dynamic stiffness model of the semi-active hydraulic damping strut was discussed, which showed that bushing can be ignored in low-frequency range. Then, the influence of equivalent spring stiffness, damping constant, and rubber bushing stiffness on the stiffness and damping capacity of the semi-active hydraulic damping strut were analyzed. Finally, the prototype of the semi-active hydraulic damping strut was developed and designed based on the vehicle in situ shift and engine key on/off situations, and experiments of the vehicle with and without semi-active hydraulic damping strut were carried out to verify its function.

Funder

Youth innovative talents program of guangdong education department

Guangdong education department innovation project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Hydraulically Controlled Rear Mount to Mitigate Key on/off Requirement of Passenger Car;SAE Technical Paper Series;2024-01-16

2. A hybrid modeling approach for automotive vibration isolation mounts and shock absorbers;Nonlinear Dynamics;2023-07-06

3. Modeling and analysis of high-frequency dynamic characteristics of double isolation rubber mounts;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-11-15

4. Modeling and analysis of dynamic characteristics of rubber isolators for electric vehicles under high-frequency excitation;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-07-24

5. Research on dynamic stiffness with the high-order fractional derivative model for rubber bushing;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3