Identification of the tire model and road adhesion coefficient based on vehicle dynamic response data and the BP neural network algorithm

Author:

Zhu Yueyan1,Zhang Tingfang1,Wang Aichun2,Huang Juhua1,Wu Xiaojian12ORCID

Affiliation:

1. School of Advanced Manufacturing, Nanchang University, Nanchang, China

2. Jiangling Motor Co., Ltd, Nanchang, China

Abstract

The longitudinal and lateral dynamic responses of a vehicle are essentially determined by the forces resulting from the contact between the tire and road surface. Therefore, identifying the tire model and road adhesion coefficient plays an important role in vehicle dynamics control. At present, the identification of a nonlinear tire model essentially assumes that slip ratio-longitudinal force data or wheel side slip angle-lateral force data are known and that nonlinear fitting is performed, and the road adhesion coefficient based on the dynamic response is also identified on the premise of a known tire model. In this paper, the characteristic of approximating arbitrary nonlinear mapping relationships by a BP neural network is taken advantage of, and an off-line identification method of the Dugoff tire model based on onboard sensors and vehicle dynamics response is proposed. On this basis, an online identification method for the road adhesion coefficient is subsequently proposed. Finally, vehicle experiments on steering and braking are performed to verify the accuracy of the method in the Simulink-CarSim joint simulation environment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid modeling for vehicle lateral dynamics via AGRU with a dual-attention mechanism under limited data;Control Engineering Practice;2024-10

2. Estimation of road friction coefficient based on WOA-BP neural network;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3