Mechanism-oriented control for suppressing start-up judder of vehicle with automatic dry clutch: Experiment and simulation analysis

Author:

Yuan Renfei1ORCID,Wu Guangqiang12,Shao Chihui1,Su Shaoqin1

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai, China

2. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Abstract

In this paper, a mechanism-oriented control strategy is proposed to cut off the introduction process of negative damping caused by the Stribeck effect for suppressing the vehicle start-up judder. From the experimental analysis, the characteristic frequency of start-up judder is mainly concentrated at about 8.25 Hz, coinciding with the first-order natural frequency of the driveline system. A 13-degree-of-freedom powertrain branched model is established, whose validity and accuracy in reflecting the characteristics of start-up judder are verified by comparing with the experimental results in time–frequency domain. The start-up judder mechanism is profoundly revealed through explaining the introduction of negative damping and the origin of characteristic frequency. The positive-feedback closed loop caused by the negative gradient characteristic of the Stribeck effect is the determining factor that promotes the aggravation of the fluctuation in the rotational speed of clutch-driven plate, which is the manifestation of the negative damping. The core idea of the mechanism-oriented control strategy is to cut off the positive-feedback closed loop, which is achieved by fine-tuning the position of release bearing. The judder-suppression performance behaves well both in simulation and in experiment.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3