Experimental and numerical investigation on the heat transfer of an automotive engine’s turbocharger

Author:

Basir Hamed1ORCID,Gharehghani Ayat2ORCID,Ahmadi Abolfazl3,Agha Mirsalim Seyed Mostafa4,Rosen Marc A5

Affiliation:

1. Department of Mechanical Engineering, Eslamshahr Branch, Islamic Azad University, Eslamshahr, Iran

2. School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran

3. School of Advanced Technologies, Iran University of Science and Technology, Narmak, Tehran, Iran

4. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

5. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, ON, Canada

Abstract

Measuring the temperature distribution in a complex and important engine part, such as a turbocharger, is essential for improving engine performance and efficiency. Heat transfer from the turbine to the compressor can strongly influence the turbocharger performance. One of the main measurement methods involves the installation of multiple K-type sensors. However, the location as well as the maximum and minimum temperatures of the turbocharger and the subsequent critical points may not be obtained by using sensors. In the current study, thermocouples, as well as an infra-red camera, are used to study the temperature distribution of the turbocharger housing in a spark ignition engine. A new method is introduced to determine the thermal radiation coefficient of the turbocharger housing by using a laboratory furnace and an infra-red camera. Together with experiments, the finite element method is used to find the temperature distribution in the turbocharger for all thicknesses. Comparing the temperature distribution obtained from simulation with experimental data, an acceptable level of agreement is observed. The location and temperature of the hottest area in experimental and numerical investigations are close to the waste gate. Temperatures using the finite element method for bearings exhibit maximum and minimum errors of 4.9% and 2.3%, respectively, indicating reasonable accuracy for the simulation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3