Evaluation and prediction method of automotive electronic accelerator pedal based on support vector regression

Author:

Wang Minxue1,Miao Wei1,Tan Yudian1,Wu Kunpeng1,Li Xue1,Gu Yili1,Chen Liqing12ORCID

Affiliation:

1. College of Engineering, Anhui Agricultural University, Hefei, China

2. Anhui Province Engineering Laboratory of Intelligent Agricultural Machinery and Equipment, Hefei, China

Abstract

In the process of automobile electronic accelerator pedal development, it is a critical and challenging issue to evaluate the rationality and comfort of the design of an automotive electronic accelerator pedal. Many factors influence the comfort of the accelerator pedal, such as the spatial layout, dynamic characteristics, and matching characteristics of the accelerator pedal and vehicle motion. Since comfort evaluation requires a lot of manpower and material resources, this paper proposes a prediction model based on support vector machine regression algorithm (SVR) for comprehensive evaluation of Chinese passenger car pedals. It uses the known evaluation results to predict the unknown evaluated accelerator pedal parameters to achieve a more efficient and accurate assessment of electronic accelerator pedal design. Firstly, the article performs pedal position scans, pedal static, and road tests to give criteria, limitations, and recommended design ranges for pedal operation. Then, the vehicle performance was predicted and evaluated using a support vector machine prediction model and back propagation (BP) neural network prediction model for comparison. The correlation coefficient for the prediction results of the SVR model was 0.9024 with a mean square error was 0.00195. The correlation coefficient for the BP neural network model prediction result was 0.8694 with a mean square error of 0.00582. Finally, the simulation results were analyzed, and the results showed that support vector regression outperformed the neural network in predicting the validity and reliability of pedal design and performance evaluation, and can facilitate automotive pedal design and development.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3