A quantitative method of calculating transient nonlinear heat partition coefficient between clutch friction discs with deep learning

Author:

Zhang Peng1ORCID,Zheng Changsong1,Xiong Cenbo1,Ma Biao1,Yu Liang1,Luo Dengming2

Affiliation:

1. School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing, China

2. Hunan Automotive Engineering Vocational College, Hunan, China

Abstract

In the current clutch temperature field study, the generally used constant heat partition coefficient tends to overestimate the separator disc temperature and underestimate the friction disc temperature. Although some researchers have found the characteristics of the time-varying heat partition coefficient, a suitable method is still needed to apply it to temperature calculations. This study provides a quantitative method for the application of the transient nonlinear heat partition coefficient to temperature calculations. The finite difference method is adopted to figure out the time-varying curve of the heat partition coefficient by coupling the contact temperature of the friction components. The numerical results show that the heat partition coefficient is independent of rotation speed with three stages: initial value, rapid time-varying, and steady-state. Different from the analytical method, we apply a deep learning method to train the quantisation function to characterise these three stages, avoiding complex formula derivation. As a result, the quantitative function can characterise the time-varying heat partition coefficient accurately, with an average error of 0.19%, 3.05% and 0.62% for the inert, time-varying, and steady-state stages, respectively. In addition, the accuracy of applying the quantisation function in temperature simulation is verified by friction experiments, and the error is less than 8%. This is superior to the results of solving the temperature field by a constant heat partition coefficient.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3