Affiliation:
1. Department of Electrical and Electronics Engineering, National Institute of Technology Delhi, New Delhi, Delhi-110040, India
Abstract
This paper addresses the issue of control of a vehicle platoon system with limited on-board energy and communication resources and subjected to cyber-physical attacks. A platoon model for the predecessor-leader following topology under the effect of cyber-attack and time-varying delay is developed. A stochastic type deception attack is considered in this paper at the sensor-controller end of a vehicle. The probability of occurrence of attack is represented using a random variable. In addition, to reduce the usage of resources in a system, a decentralized event-triggering communication mechanism is proposed where each vehicle can decide independently on when to transmit its state to the controller. Further, the criteria for co-designing of control law and triggering parameter ensuring internal stability of the platoon system is developed based on the proposed triggering mechanism. A condition to achieve string stability for the controller is also obtained. Further, to avoid the problem of Zeno phenomena, a lower bound on the transmission period is presented. The effectiveness of the proposed methodology is established through simulation example.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献