Event-triggered control of vehicle platoon under deception attacks

Author:

Bansal Kritika1ORCID,Mukhija Pankaj1

Affiliation:

1. Department of Electrical and Electronics Engineering, National Institute of Technology Delhi, New Delhi, Delhi-110040, India

Abstract

This paper addresses the issue of control of a vehicle platoon system with limited on-board energy and communication resources and subjected to cyber-physical attacks. A platoon model for the predecessor-leader following topology under the effect of cyber-attack and time-varying delay is developed. A stochastic type deception attack is considered in this paper at the sensor-controller end of a vehicle. The probability of occurrence of attack is represented using a random variable. In addition, to reduce the usage of resources in a system, a decentralized event-triggering communication mechanism is proposed where each vehicle can decide independently on when to transmit its state to the controller. Further, the criteria for co-designing of control law and triggering parameter ensuring internal stability of the platoon system is developed based on the proposed triggering mechanism. A condition to achieve string stability for the controller is also obtained. Further, to avoid the problem of Zeno phenomena, a lower bound on the transmission period is presented. The effectiveness of the proposed methodology is established through simulation example.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3