Nonlinear dynamic properties of hydraulic suspension bushing with emphasis on the flow passage characteristics

Author:

Chai Tan1,Dreyer Jason T1,Singh Rajendra1

Affiliation:

1. Acoustics and Dynamics Laboratory, Smart Vehicle Concepts Center, Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio, USA

Abstract

Hydraulic bushings, which are often employed in vehicle suspension systems, exhibit significant excitation-dependent properties. However, previous analyses were mainly based on the linear system theory. To overcome this void, nonlinear characteristics of common hydraulic bushing configurations are examined in this article, with focus on the component properties as excited by sinusoidal or step displacements of various amplitudes. First, a nonlinear model for a laboratory prototype with a long passage and a short passage (in parallel) is developed using a lumped-parameter approach. Then the system parameters and nonlinearities are identified using experimental and computational methods, with an emphasis on characterization of the flow passage resistances. Steady-state harmonic and transient step experiments are conducted on the prototype, and the dynamic pressures inside two fluid chambers and the force transmitted to the base are measured. Numerical solution of the nonlinear model shows that the proposed model predicts both steady-state sinusoidal responses and transient responses well for single-passage and dual-passage configurations; significant improvement over a corresponding linear model is observed. Finally, approximate analytical and semi-analytical solutions of the nonlinear model are obtained by using the harmonic balance method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Working mechanisms and dynamic performances for a hydraulically damped bushing with an inertia track;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-12-03

2. Mathematical Modeling and Experimental Verification of Oil-Gas Spring;Journal of Physics: Conference Series;2020-09-01

3. Analytical Calculation of Large Deflection of Annular Thin Plate of Damping Valve;IOP Conference Series: Materials Science and Engineering;2020-01-01

4. Thermodynamic Modeling and Simulation Analysis of Double-tube Damper;IOP Conference Series: Materials Science and Engineering;2020-01-01

5. Effect of fractionally damped compliance elements on amplitude sensitive dynamic stiffness predictions of a hydraulic bushing;Mechanical Systems and Signal Processing;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3