Design and optimization of acoustic packages using RSM coupled with range analysis

Author:

Zhang Zhifei1ORCID,Yang Wencheng1,Cao Sishi1,Luo Xuhui1

Affiliation:

1. Chongqing University, Chongqing, China

Abstract

Acoustic packages are commonly used to reduce the mid-high frequency noise in the automobile, but fully characterizing their absorption and insulation mechanisms poses challenges. Introducing a data-driven approach to analyze their performance, existing research lacks clarity on the factors influencing acoustic package efficacy when constructing approximate models. To alleviate this, a method of optimizing the acoustic package by combining range analysis with a Response Surface Methodology (RSM) model is proposed in this paper. Initially, a validated Statistical Energy Analysis (SEA) model predicts automobile interior noise, pinpointing the dash panel as a key component for optimization through contribution analysis. Then, acoustic material tests are conducted to design the acoustic package. To compare the design scheme and the original scheme for the acoustic package in the automobile, the simulation and the test of the automobile ATF are performed and the automobile SEA model is verified through the test. Based on the range analysis, an RSM model is developed with the significant factors as input and the sound pressure level (SPL) of the driver’s head acoustic cavity as output. Genetic algorithm optimization is finally performed to obtain the optimized scheme within constrained thickness and weight. The results reveal that the acoustic package optimized scheme effectively improves the noise reduction effect in the mid-frequency range and decreases the weight of the acoustic package, which promotes the comprehensive performance of the acoustic package.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3