Effects of blade surface roughness on compressor performance and tonal noise emission in a marine diesel engine turbocharger

Author:

Liu Chen1,Cao Yipeng1ORCID,Ding Sihui1,Zhang Wenping1,Cai Yuhang1,Lin Aqiang1ORCID

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, China

Abstract

A numerical study was conducted to investigate the effects of blade surface roughness on compressor performance and tonal noise emission. The equivalent sand-grain roughness model was used to account for blade surface roughness, and a hybrid method that combines computational fluid dynamics and boundary element method was used to predict compressor performance and tonal noise. The numerical approach was validated against experimental data for a baseline compressor. Nine different cases with different blade surface roughness were studied in this paper, the global performance was analyzed under compressor design speed, and the tonal noise level was predicted under the design condition. The results indicate that compressor total-to-total pressure ratio and isentropic efficiency were gradually decreased with the increasing blade surface roughness. Besides, the blade total pressure loss coefficient and the efficiency loss coefficient were also increased. It was found that the reverse flow at the leading edge of compressor rotor blades reduced blade loading. The pressure fluctuation at the leading edge showed that the peak of pressure fluctuations increased as the blade surface roughness was increased. The sound pressure level at blade-passing frequency shows a significant change with variation in blade surface roughness, which results in an increased total noise level. Furthermore, it was shown that the blade surface roughness had nearly no influence on acoustic directivity, but the sound pressure level increased with the increase in roughness, especially at blade-passing frequency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3