Analysis of the Vehicle Brake Judder Problem by Employing a Simplified Source—Path—Receiver Model

Author:

Duan C1,Singh R1

Affiliation:

1. Acoustics and Dynamics Laboratory, Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio, USA

Abstract

An analytical formulation of the brake judder problem caused by disc thickness variation is described by using a simplified source—path—receiver model. Eigenvalue analysis is first conducted to determine the transfer mechanism from the brake source to the steering-wheel receiver. Calculations show that the peak vibration levels of the steering wheel are seen when the rotational frequency of the tyre coincides with the resonant frequency of the transfer path; in this case, only the first-order disc thickness variation is considered. The effects of two key parameters, associated with the source and the path respectively, are analytically and computationally studied. Analysis suggests that the lower pad stiffness and/or the higher bushing stiffness should effectively reduce the vibration levels. Finally, a new vibration control concept is proposed that modulates the actuation pressure; it is based on an approximate solution for the angular displacement of the disc in the model developed here. Preliminary work indicates that this concept could be very effective in reducing the receiver vibration level without sacrificing the brake performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Vibro-Acoustic Path for Quantification of Tire-Pavement Interaction Noise Using a Two-Wheeler;Journal of Testing and Evaluation;2021-05-26

2. Transfer behaviours and influences of high-order hot judder in passenger cars;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2017-05-07

3. Active Brake Judder Attenuation Using an Electromechanical Brake-by-Wire System;IEEE/ASME Transactions on Mechatronics;2016-12

4. Friction Dynamics of Vehicle Brake Systems;Friction Dynamics;2016

5. Frequency domain properties of hydraulic bushing with long and short passages: System identification using theory and experiment;Mechanical Systems and Signal Processing;2015-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3