Design of steering wheel torque with human-machine interaction for uncoupled shared steering

Author:

Chen Chaoning1ORCID,Zheng Hongyu1ORCID,Zong Changfu1,Kaku Chuyo2

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin, China

2. Jiangsu Chaoli Electric Co. Ltd, Danyang, Jiangsu, China

Abstract

In the uncoupled shared steering architecture based on the steering-by-wire (SBW) system, direct access to road feel and automation-related information is unavailable to the driver. To address this problem, this paper proposes a steering wheel torque feedback model that considers human-machine interaction information. First, the model predictive control (MPC) is adopted in lateral vehicle control by automation. Then a fuzzy control-based control authority allocation model is applied to assign the control authority weight between the human driver and automation according to the value of the Path Lateral Hazard (PLH) Factor and the Driver’s Intent Evaluation (DIE) Factor. These two factors reflect the probability of lateral vehicle collision and the intensity of the driver’s driving intention, respectively. Next, the road feel feedback torque and the human-machine interface (HMI) feedback torque is incorporated in the steering wheel feedback torque model to enhance the driver’s experience in SBW vehicles and trust in the automation. The HMI feedback torque is designed to provide human drivers with information on control authority weight variation and desired angle deviation between the human driver and automation. Simulation and experiment results suggest that the proposed uncouple shared control method can accelerate driver acceptance of automation and provide the driver with a more intuitive steering experience.

Funder

National Key Research and Development Program of China

Science and Technology Department Program of Jilin Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3